sharkydevil

AlanLG

9 de abril del 2024

Consider the miquel point of quadrilateral BCFE, this is, the intersection of circles (AEF) and (ABC), we say this point is the A-sharkydevil point of $\triangle ABC$

Figure 1: The A-Sharkydevil point.

This point have many nice propierties, we are going to present the more known in the following table

Figure 2: A-Sharkydevil propierties

Claim 0.2 — SD bisects $\angle BSC$ then it passes through the midpoint M of arc \widehat{BC}

Proof. invert wrt (*BIC*), A goes to $A^* = BC \cap AM$, (*AEF*) goes to (A^*ID) then so S goes to D.

Claim 0.3 — P be the foot from D to EF then S is the inverse of P wrt incircle

Proof. invert wrt incircle, (AEF) goes to EF, as this inversion swaps (ABC) to the nine-point circle of $\triangle DEF$, then P is the inverse of S

Claim 0.4 — AS and BC meet on AI perpendicular through I

Proof. use Radical Axis Theorem on (AFE), (BIC) and (ABC)

Claim 0.5 - SD and (AEF) meets on A-altitude

Proof. Invert wrt (BIC), let $R = (AEF) \cap SD$, $R^* = (IDA^*) \cap SD$ so

$$\angle MID = \angle MR^*A^* = \angle MAR$$

consider O the center of (ABC), then O goes to $O^* = MO \cap (BIC)$ then BOCM is a rhombus and note that

$$\angle MAO = \angle MO^*A^* = \angle O^*MA^* = \angle MID = \angle MAR$$

ergo AU and AO are isogonal

Ejemplo 0.6 (Mexico TST 2024)

Let Ω be the circumcircle of $\triangle ABC$ with incenter I. Let $M \neq A$ be the intersection of AI and Ω , and $D \in BC$ such that $ID \perp BC$. Let $E \in \Omega$ such that $AE \perp BC$. Let $N \neq I$ the intersection of ID and (BIC). Prove that NE and MD intersect at Ω

Figure 3: Mexico TST/2024

We instantly note that $S = MD \cap (ABC)$ is the A-sharkydevil point, now note that

$$\angle AMS = \angle AES = \angle INS$$

as $IS \parallel AE$ we are done; the last inequality follows by IMNS being cyclic which is true because the inversion wrt (BIC) send \overline{IDN} to IMNS